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Technical innovation is rapidly improving the clinical utility
of cardiac computed tomography (CT) and will increas-
ingly address current technical limitations, especially the
association of this test with relatively high levels of radia-
tion. Guidelines for appropriate indications are in place
and are evolving, with an increasing evidence base to
ensure the appropriate use of this modality. New technol-
ogies and new applications, such as myocardial perfusion
imaging and dual-energy CT, are being explored and are
widening the scope of coronary CT angiography from mere
coronary artery assessment to the integrative analysis of
cardiac morphology, function, perfusion, and viability. The
scientific evaluation of coronary CT angiography has left
the stage of feasibility testing and increasingly, evidence-
based data are accumulating on outcomes, prognosis, and
cost-effectiveness. In this review, these developments will
be discussed in the context of current pivotal transitions in
cardiovascular disease management and their potential
influence on the current role and future fate of coronary
CT angiography will be examined.
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The rapid rise of coronary computed
tomographic (CT) angiography
from a research application to a ro-

bust, widely embraced clinical tool over
the last decade has very few parallels in
medicine. We currently observe a con-
vergence of factors that has the potential
of making coronary CT angiography a piv-

otal cornerstone in cardiovascular dis-
ease management, deserving of the high-
est level of attention of our field. Factors
with critical influence on the clinical im-
plementation of coronary CT angiography
are related to the scope and importance
of cardiovascular disease, rapidly evolv-
ing technology, widening use of coronary
CT angiography for established indica-
tions, emerging new applications, funda-
mental changes in clinical cardiovascular
disease management, and increased em-
phasis on cost-effectiveness in health
care. In this article, we review each of
these factors as they relate to the current
and future role of coronary CT angiogra-
phy.

The Scope

We currently are observing a sharp de-
cline in cardiovascular disease mortality,
which has been mainly attributed to sub-
stantial improvements in primary and
secondary prevention and medical (ie,
pharmaceutical) disease management
(1). However, the fact remains that car-
diovascular disease continues to be the
most important health problem globally;
particularly in the westernized world. In
the United States, the current prevalence
of coronary heart disease is estimated at
16 000 000 individuals (about 8 700 000
men and 7 300 000 women) among adults
older than 20 years of age. The preva-
lence of myocardial infarction is esti-
mated at 8 100 000. In 2004, coronary
artery disease (CAD) caused 451 326
deaths (233 538 male and 217 788 female
deaths), of which 156 816 (82 909 men,
73 907 women) were owing to myocar-
dial infarction (1).

Technical Evolution

While electron-beam CT (2,3) for the
time of its existence had a role in nonin-
vasive cardiac imaging, primarily as a
technique for coronary artery calcium
scoring, the rapid rise of cardiac CT was
driven by the introduction of multi–
detector row CT in 1998. The first gener-
ation of four–detector row CT technology
enabled electrocardiographically (ECG)
synchronized high spatial and temporal
resolution imaging of the heart (4), and

soon after its introduction was shown to
be capable of quantifying coronary artery
calcification (5), evaluating coronary ar-
tery stenosis (4,6), measuring cardiac
function (7), and analyzing atheroscle-
rotic plaque (8). With each subsequent
scanner generation, for example, intro-
duction of 16–detector row CT in 2001
(9,10), the proportion of patients that
could be successfully imaged with nonin-
vasive coronary CT angiography gradu-
ally increased. For example, improve-
ments in temporal resolution reduced the
percentage of vessel segments that were
not evaluable because of motion artifacts
(11), shorter overall scan times enabled
higher contrast medium attenuation with
lower volumes (11,12), and the gradual
implementation of radiation protection
techniques lowered the overall patient ra-
diation exposure (13,14).

The recent rapid widespread growth in
coronary CT angiography parallels the in-
troduction of 64–detector row CT systems
(15) in 2004. These are currently the most
commonly used platform for performing
cardiac CT. These scanners have a tempo-
ral resolution of up to approximately 165
msec and enable image acquisition of the
cardiac anatomy within 5–10 seconds of
scan time (16). However, while a substan-
tial improvement over previous genera-
tions, the temporal resolution of these scan-
ners, even with use of multisegment recon-
struction algorithms, which can potentially
yield temporal resolution of up to approxi-
mately 43 msec at some heart rates
(17,18), is still too limited in subjects with
high resting heart rates and irregular heart
rhythm. As a result, pharmacological rate
control above heart rates of 60–70 beats
per minute remains a necessity (19,20).

Dual-source CT entered the field in
2006; its design reflects the concepts of an
earlier experimental prototype (ie, the “dy-
namic spatial reconstructor”) (21,22). This
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Abbreviations:
CAD � coronary artery disease
ECG � electrocardiogram
LAD � left anterior descending coronary artery
3D � three-dimensional

Essentials

� Innovations in scanner technology
and acquisition protocols continue
to improve the performance and
usefulness of coronary CT angiog-
raphy and enable substantial re-
ductions in radiation exposure
associated with this test.

� Compared with invasive coronary
catheterization, coronary CT an-
giography has high accuracy for
stenosis detection; the exceed-
ingly high negative predictive
value of this test enables reliable
noninvasive exclusion of signifi-
cant coronary artery stenosis.

� The available evidence suggests
that the use of electrocardio-
graphically synchronized CT for
the assessment of patients with
acute chest pain is accurate and
safe and can effectively address
limitations of the traditional diag-
nostic work-up.

� Coronary CT angiography enables
the noninvasive assessment of the
calcified and noncalcified athero-
sclerotic plaque burden and may
play an increasing future role for
cardiac risk stratification and
therapeutic monitoring.

� Technologies and acquisition pro-
tocols are currently under devel-
opment that aim at combining
coronary CT angiography with
CT-based methods for the evalua-
tion of myocardial function, perfu-
sion, and viability for the compre-
hensive assessment of coronary
heart disease, with CT as the sole
imaging modality.

� Rapidly accumulating evidence-
based data increasingly supports
that coronary CT angiography, if
used according to established
guidelines, is cost-effective.
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scanner consists of two x-ray tubes and two
detectors mounted perpendicularly in the
same gantry (23). Because of this configu-
ration, sufficient projection data for full im-
age reconstruction can be sampled during
quarter-rotation scanning as opposed to
half-rotation scanning with conventional
single-source multidetector CT systems,
thus improving the temporal resolution to
one-fourth of the gantry rotation time (ie,
330 msec/4 � approximately 83 msec)
(23,24). Because of this excellent temporal
resolution, high diagnostic accuracy for the
detection of coronary artery stenosis at
high and irregular heart rates without phar-
macological rate control has repeatedly
been reported (25,26) (Fig 1).

Technical innovations in cardiac CT are
continuing at a rapid rate. Recently, 256-
row and 320-row single-source systems, as
well as 128-row dual-source CT scanners,
have been introduced (27,28). The quest
for broader detector arrays is motivated by
the thought that complete volume coverage
of the heart within a single heartbeat and
isophasic datasets may reduce patient radi-
ation (29) and can reduce susceptibility to
arrhythmia, thus eliminating the type of
ECG-misregistration artifacts that are still
occasionally problematic with 64-row CT

acquisitions (27,30,31). The availability of
detector arrays that are wide enough to
cover the entire cardiac anatomy (27,28)
also enables new approaches in the assess-
ment of cardiac function. This includes the
acquisition of dynamic, time-resolved data
on myocardial perfusion and the myocar-
dial blood supply, which previously had
been limited by insufficient detector cover-
age (32).

An alternative strategy, dual-energy ac-
quisition, for evaluating the myocardial
blood supply based on static, non–time-
resolved coronary CT angiograms has also
been proposed with dual-source CT
(33,34). First, concepts of dual-energy CT
imaging date back more than 2 decades
(35–38). However, early experimental ef-
forts ordinarily required the acquisition of
two separate CT scans at different kilovolt-
age levels with subsequent image co-
registration, which limited their clinical util-
ity and naturally precluded imaging the
beating heart. The recent availability of
dual-source CT with its two-tube configura-
tion enables the simultaneous acquisition of
high and low x-ray energy spectra with a
single CT scan (39). In the heart, dual-
energy CT has been shown to permit the
analysis of the myocardial blood supply by

analyzing the iodine (and thus blood) vol-
ume within the myocardium (33,34), ex-
ploiting the fact that tissues in the human
body and iodine-based contrast media have
unique absorption characteristics when
penetrated with different x-ray energy lev-
els (see below). The application of the dual-
energy approach using first-generation
dual-source CT, however, results in de-
creasing the temporal resolution to 165
msec compared with the available 83 msec
when both tubes are operated at the same
kilovoltage. Other strategies for the acqui-
sition of multiple energy image data that
provide integrative information on coro-
nary artery morphology and the state of
myocardial perfusion are currently under
investigation and include rapid switching of
kilovoltage levels during scan acquisition
and multilayer detectors that filter specific
photon energies from the x-ray spectrum.

Radiation Dose

Recent reports (40,41) on increasing radi-
ation exposure from diagnostic CT exami-
nations have sparked increasing concern
and discussion among the medical commu-
nity and public at large. A multicenter study
reported an average effective radiation

Figure 1

Figure 1: Contrast-enhanced retrospectively ECG-gated dual-source coronary CT angiography in 79-year-old man with atypical chest pain. Average heart rate during
scan acquisition was 129 beats per minute (minimum, 103 beats per minute; maximum, 150 beats per minute). (a) Three-dimensional (3D) volume rendering from left
anterior oblique perspective, (b) curved multiplanar reformation, and (c) transverse section orthogonal to the vessel lumen demonstrate significant coronary artery steno-
sis (arrowhead) in the proximal left anterior descending coronary artery (LAD) caused by predominantly noncalcified plaque.
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dose equivalent of 12 mSv associated with
cardiac CT and demonstrated large varia-
tions (5–30 mSv) among participating cen-
ters depending on the scanner manufac-
turer, geographic location, and use of radi-
ation protection regimens (42). As with all
imaging studies involving radiation, the in-
dividual assessment of the patient’s risk-
benefit ratio and the responsibility to keep
radiation exposure at a minimum is incum-
bent on us as the stewards of radiation use
in medical imaging. Accordingly, all ap-
proaches to lowering radiation dose in car-
diac CT are welcome and should be care-
fully considered. There are time-honored
approaches such as ECG-dependent tube
current modulation (14) and use of lower
tube voltage (43,44) in slimmer individuals
(Fig 2), which should be used whenever
possible.

However, the greatest radiation dose
reductions have been reported with the re-
cently rediscovered technique of prospec-
tively ECG-triggered coronaryCTangiogra-
phy (45–47). This technique consists of se-
quential acquisition of transverse sections

with application of radiation only during a
predetermined interval in the cardiac cycle
(ordinarily diastole). This had been the de-
fault method for ECG synchronization of
scan acquisition used with electron-beam
CT (48). Prospective ECG triggering en-
ables performing coronary CT angiography
at a fraction of the effective radiation dose
equivalent (ie, 1–4 mSv), when compared
with the constant application of radiation
used in retrospectively ECG-gated slow-
pitch spiral multidetector CT (4) (Fig 3).

The main limitations of prospective
ECG triggering to date have been the inabil-
ity to evaluate cardiac function. More im-
portant, this technique has a limited ability
to retrospectively (ie, after scan acquisi-
tion) change the simultaneous registration
of image data with more suitable phases of
the cardiac cycle, which is one of the hall-
marks of retrospective ECG gating. Also,
patients with arrhythmia have traditionally
not been eligible for prospectively ECG-
triggered examinations, because arrhyth-
mia naturally precludes reliable simulta-
neous registration of image data with the

desired cardiac phase. There are various
technical attempts at improving the robust-
ness of this acquisition technique for faster
and more irregular heart rates. These in-
clude single heart beat volume CT acquisi-
tion (27), prolonging the acquisition inter-
val during the RR-cycle to provide more
flexibility in choosing the most suitable
phase of image reconstruction (49), or
adaptive online monitoring of the ECG for
the occurrence of extra systoles to ensure
image acquisition only during the desired
cardiac phase (49). Despite these technical
advances, we currently recommend re-
stricting the use of prospectiveECG trigger-
ing to subjects with stable and slow (ie, �
65 beats per minute) heart rates. This may
make it advisable to pharmacologically con-
trol heart rate, regardless of the scanner’s
temporal resolution.

Another recent technical development
with potential to lower radiation exposure
of CT studies, including cardiac CT, is sta-
tistical iterative image reconstruction. Tra-
ditional filtered back projection image re-
construction has limitations regarding 3D
cone-beam geometry, data completeness,
and low radiation dose acquisitions. Itera-
tive image reconstruction approaches pro-
vide more flexibility for accurate physical
noise modeling and geometric system de-
scription (50). Initial experience (50) sug-
gests that these reconstruction methods al-
low for improvements in image quality and
lower image noise and thus appear to be
particularly promising for low-radiation
dose cardiac CT (Fig 4).

Scanner technology continues to
evolve; the heightened awareness of in-
creasing radiation exposure from medical
imaging will stimulate the expedited de-
velopment of systems and acquisition
strategies that are capable of imaging the
heart at much lower radiation dose than
current CT systems, which should, in the
future, ameliorate current radiation con-
cerns about cardiac CT.

Framework for Appropriate Use and
Indication

As with all diagnostic procedures involving
the use of ionizing radiation, the assess-
ment of the risk-benefit ratio for each pa-
tient, appropriate patient selection, and in-
dication for coronary CT angiography

Figure 2

Figure 2: Contrast-enhanced retrospectively ECG-gated coronary CT angiography in 52-year-old woman
(height, 1.63 m; weight, 51 kg; body mass index, 19.2) with atypical chest pain. A low-voltage (100-kVp) pro-
tocol and ECG dose modulation were used with an effective radiation dose equivalent of approximately 5 mSv
(dose–length product � 274 mGy � cm). (a) Three-dimensional volume rendering from left anterior oblique
perspective and (b) automatically generated curved multiplanar reformation show normal coronary arteries.
RCA � right coronary artery, Cx � circumflex coronary artery. The high negative predictive value of a normal
or near-normal coronary CT angiogram can reliably exclude coronary artery stenosis as a reason for chest
pain and obviate further work-up for CAD.
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should guide referring physicians and radi-
ologists in the use of this examination. Ini-
tially, patient selection and indications for
cardiac CT were variable and largely insti-
tutionally driven. However, with more
widespread use, the need for defining pa-
tient selection and appropriate use has be-
come more apparent. Recently, several
documents have been issued by the perti-
nent professional societies (51–55) that
provide more informed guidance on appro-
priate indications for the use of cardiac CT.
These recommendations confirm a number
of traditional indications for cardiac CT,
such as the assessment of coronary artery
anomalies (Fig 5) and bypass grafts. There
is consensus that the use of coronary CT
angiography is appropriate in symptomatic
individuals, especially if symptoms, sex, and
age suggest a low to intermediate probabil-
ity of significant coronary artery stenosis
(Fig 6). There is also consensus that coro-
nary CT angiography to date has no role for
general screening for coronary atheroscle-
rosis in asymptomatic individuals, because
the current levels of radiation are incompat-
ible with the prerequisites of a successful
screening test (56,57) and data on the cost-
effectiveness of this indication are lacking.
The issuance of guidelines and appropriate-
ness criteria by the professional societies
has helped to define the indications for cor-
onary CT angiography and curb potential
overutilization, although they do not re-
place the need for individual assessment of
the risk-benefit ratio in each patient. In ad-
dition, these recommendations only reflect
the current status of our understanding of
the appropriate use of this test and are sub-
ject to change as new data and experience
are gathered.

Comparison with Conventional
Coronary Angiography

The early observations using four- and 16-
row (6,58–60) CT scanners with regard to
the diagnostic performance of noninvasive
coronary CT angiography were seminal in
demonstrating the potential usefulness of
this test for visualizing the coronary artery
lumen and vessel wall in subjects suspected
of having CAD. Early investigations re-
ported sensitivity, specificity, positive pre-
dictive value, and negative predictive value
of 75%–90%, 90%–95%, 70%–90%, and

80%–90%, respectively, for the detection
of hemodynamically significant stenosis
(58,61–63). However, these early results
were substantially limited by motion arti-
facts or extensive calcification. These arti-
facts frequently necessitated the exclusion
of coronary artery segments, vessels, or pa-
tients from data analysis in the early de-
scriptions and to some extent overstated
the diagnostic performance that was
achievable at that time (6,64). Subse-
quently, more systematic analyses of the
performance of coronary CT angiography
using four- and 16-row CT in patients sus-
pected of having CAD demonstrated a
pooled sensitivity for detecting any stenosis
of about 89% (range, 85%–92%), conclud-
ing that the sensitivity obtainable with these
scanner generations may not be completely
satisfactory to reliably rule out coronary ar-
tery stenosis (15,65).

The subsequent introduction of 64-row

CT technology led to substantial improve-
ments in spatial and temporal resolution
that resulted in increased sensitivity and
specificity for detecting significant coronary
stenosis when compared with conventional
coronary angiography. Results of represen-
tative studies evaluating the performance of
64-row CT and dual-source CT for detect-
ing hemodynamically significant coronary
artery stenosis (Fig 7) are shown in the
Table (25,26,66–77). These studies re-
port sensitivity and specificity of 86%–
99% and 92%–98%, respectively. Most
important, with the exception of a single,
recent study (78) that showed lower sen-
sitivity than specificity (85% sensitivity,
90% specificity, 91% positive predictive
value, 83% negative predictive value), all
investigations performed with current
generations of multidetector CT scanners
have consistently reported high negative
predictive values that approach or reach

Figure 3

Figure 3: Contrast-enhanced prospectively ECG-triggered 128-section coronary CT angiography per-
formed with 120 kV and 220 mAs in 49-year-old woman (height, 1.65 m; weight, 54 kg; body mass index,
19.8; heart rate, 54 beats per minute) with atypical chest pain, equivocal stress test, and an effective radiation
dose equivalent of approximately 2.4 mSv (dose–length product � 135 mGy � cm). Curved multiplanar ref-
ormations of (a) LAD and (b) circumflex coronary artery and (c) 3D volume rendering from a left anterior
oblique perspective show normal coronary arteries enabling confident noninvasive exclusion of coronary
artery stenosis at radiation dose levels that are lower than the average annual background radiation from natu-
ral sources.
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100% on a per-patient basis. This ex-
ceedingly high negative predictive
value, which allows reliable exclusion
of significant coronary artery stenosis
following a normal or near-normal
noninvasive coronary CT angiogram
(Figs 2, 3), is the cornerstone for the use
of cardiac CT in the management of
symptomatic patients suspected of having
CAD. In this patient population, a normal
or near-normal coronary CT angiogram
can effectively obviate further testing
(79–82).

Despite the considerable advances in
scanner technology and image postprocess-
ing techniques, there are still instances
(about 1% of vessels [67]) where results at
coronary CT angiography are ambiguous
and inconclusive. Causes of ambiguous re-
sults include motion artifacts from high and
irregular heart rates, excessive image
noise in obese patients, heavy vascular
calcifications (67,74), and the limited
accuracy of coronary CT angiography
for measuring stenosis severity (83).

Newer scanner technology has im-
proved the robustness of the examination
in patients with high and arrhythmic
heart rates (84,85). Similarly, recent
technical developments have enhanced
our ability to evaluate heavily calcified
vessel segments and to determine lesion
severity when compared with the ear-
lier results. Promising recent ex vivo
work has suggested the potential of dual-
energy CT (86,87) in reducing blooming
artifacts from heavy calcification and me-
tallic stent struts, which may further im-
prove diagnostic accuracy of coronary CT
angiography in these patients. Currently,
however, the presence of excessive coro-
nary artery calcium, particularly in com-
bination with motion or low signal-noise
ratio, continues to reduce the specificity
we can obtain in differentiating clinically
significant from nonclinically significant
coronary artery lesions. Thus, in symp-
tomatic patients with inconclusive results
at coronary CT angiography, further eval-
uation with noninvasive physiologic test-

ing (eg, nuclear myocardial perfusion im-
aging, ergometric stress testing) is ad-
vised so that hemodynamically significant
lesions are not missed and the hemody-
namic effect of borderline (ie, 30%–70%
luminal narrowing [88]) lesions can be
assessed. The percentage of patients in
whom results at coronary CT angiogra-
phy are ambiguous and inconclusive has
become successively smaller with each
new iteration of multidetector CT tech-
nology and can be expected to decrease
further with coming technical innova-
tions, such as further improvements in
temporal resolution, more sensitive de-
tector materials, and more advanced
postprocessing techniques.

Beyond Feasibility Testing

Virtually all investigations that compare
the diagnostic performance of coronary
CT angiography with invasive catheteriza-
tion have suffered from verification bias,
because results have been obtained in

Figure 4

Figure 4: Contrast-enhanced retrospectively ECG-gated dual-source coronary CT angiography in 56-year-old man with body mass index of 34 kg/m2 after coronary
artery stent placement. (a–c) Image reconstruction with conventional filtered back projection and (d–f) iterative reconstruction with two iterations. (a, d) Transverse
sections and multiplanar reformations of the (b, e) right coronary artery and (c, f) LAD show substantial reduction in image noise that corresponds to a potential dose
reduction by 50% without loss of resolution, enabling improved visualization of coronary artery stents (arrows).
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populations who clinically require inva-
sive work-up and may be different from
those in the general population. More re-
cently, the clinical performance in nonse-
lected patient populations has also been
investigated (89,90). In a segment-based
analysis for detection of significant steno-
sis (�50%) performed in 40 consecutive
individuals, Grosse et al found a sensitiv-
ity, specificity, positive predictive value,
and negative predictive value of 87%,
99%, 98%, and 95%, respectively. In this
study, patient-based analysis demon-
strated a negative predictive value of 91%
for excluding significant CAD (89).
Gaemperli et al (90) prospectively
compared the accuracy of 64-section
coronary CT angiography with that of
technetium 99m tetrofosmin single
photon emission computed tomogra-
phy (SPECT) myocardial perfusion imag-
ing, as the reference standard, for the
detection of functionally relevant CAD in
100 consecutive patients. Using a cut-off
threshold of 75% or greater area steno-
sis, these authors found a sensitivity,
specificity, negative predictive value, and
positive predictive value for the detection
of any (fixed and reversible) perfusion de-
fect of 75%, 90%, 93%, and 68%, respec-
tively, on a per-patient basis.

CT for Acute Chest Pain Assessment in
the Emergency Department

ECG-synchronized CT is increasingly
used to assess patients with acute chest
pain for pulmonary embolism, acute aor-
tic syndrome, acute coronary syndrome
(the so-called triple rule-out strategy),
and other thoracic pathologic conditions
with a single examination (52). Even after
detailed patient history, physical exami-
nation, an ECG, cardiac biomarkers, and
cardiac risk stratification (eg, using the
Thrombosis in Myocardial Infarction, or
TIMI, score [91]), there is a considerable
(�10%) proportion of patients with acute
myocardial infarction who are inappro-
priately discharged from the emergency
department. ECG-synchronized CT has
been proposed as a means to address this
dilemma by rapidly triaging patients for
admission, if actionable disease is found,
or discharge them on the basis of normal
CT findings (92–95).

Figure 5

Figure 5: Images in 70-year-old woman with continuous systolic murmur and anterior wall motion abnor-
mality at stress nuclear myocardial perfusion imaging. (a) Coronary angiogram (right anterior oblique per-
spective) was initially obtained and depicted abundant coronary-cameral fistulas; however, the right coronary
artery could not be cannulated. (b) Contrast-enhanced retrospectively ECG-gated coronary CT angiogram
displayed as 3D volume rendering from a left anterior oblique perspective shows the extent of fistulas of the
left coronary system and reveals anomalous origin of the right coronary artery (arrowhead) from the left coro-
nary artery cusp.

Figure 6

Figure 6: List of appropriate clinical indications for the performance of coronary CT angiography based on
Hendel et al study (54).
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Image acquisition strategies vary de-
pending on whether the scan range in-
cludes the entire thorax or is restricted to
a dedicated coronary CT angiogram (96).
There is also discussion regarding the ex-
act time-point when the CT study should
be performed in the work up of patients
with acute chest pain. This mainly de-
pends on the risk profile and general pre-
sentation of the patient and the local
availability of this test. The role of CT in
the assessment of acute thoracic disease
involving the great vessels such as pulmo-
nary embolism (97–99) and acute aortic
syndromes (100,101), as well as other
noncardiac causes of acute chest pain, is
well established (102). In addition to di-
agnosing or excluding these diseases,
ECG-synchronized CT acquisitions using
64-section CT angiography depict signifi-
cant coronary artery stenosis, with sensi-
tivity and specificity of 86%–100% and
92%–98%, respectively (66–73,103). CT-
based evaluation for significant coronary
artery stenosis has been shown to de-
crease the number of unnecessary hospi-
tal admissions without reducing the rates
of appropriate admissions (104) by ruling
out the absence of acute coronary syn-
drome (105). The accuracy and safety of
CT appear to be at least as good as those

of stress nuclear imaging for diagnosing
patients with acute coronary syndrome,
while time to diagnosis is shortened and
costs are potentially reduced (106–108,
see below). Finally, coronary CT angiog-
raphy has been shown to have prognostic
value in the acute chest pain setting, with
normal findings portending an extremely
low risk of future cardiovascular events
(109).

Left Ventricular Function

The evaluation of left ventricular function
is a crucial component in the assessment
of patients with coronary heart disease
and has substantial prognostic implica-
tions (110,111). CT may also be useful in
patients with new decreased left ventric-
ular function to differentiate ischemic
from nonischemic causes. Despite the
clinical importance of this parameter, CT
has never been and likely never will be
the primary method for the assessment of
cardiac function, even if superiority of CT
over echocardiography, scintigraphy, and
left ventriculography has been demon-
strated (112–114). For the primary as-
sessment of cardiac function, there are
less invasive (eg, cardiac ultrasonography
[US]) and better (eg, magnetic resonance

[MR] imaging [115–117]) technologies
available, which should be preferentially
used. However, whenever retrospectively
ECG-gated coronary CT angiography is
performed, the data inherently contain
image information across the cardiac cy-
cle, which can be reconstructed and used
for analyzing myocardial and valvular mo-
tion and for measuring global functional
parameters (Fig 8).

While CT-based cardiac function
analysis was initially time-consuming and
laborious (7), modern postprocessing
software allows intuitive cine viewing and
rapid quantification of cardiac function
parameters (118,119). Initial studies per-
formed with four-row CT underestimated
left ventricular ejection fraction (118),
primarily due to limited temporal resolu-
tion. The increased temporal resolution
of 16-row CT improved the accuracy of
left ventricular function measure-
ments in comparison with other diag-
nostic techniques (120–123). The re-
sults obtained with modern-era scan-
ners approach the accuracy of cardiac
MR imaging (116,117,124) for this ap-
plication, with slight overestimation of
end-systolic volume at multidetector CT
when compared with MR imaging, re-
sulting in a systematic underestimation

Figure 7

Figure 7: Images in 57-year-old man with persistent chest pain despite negative prior conventional angiography findings (heart rate, 79 beats per minute). Contrast-
enhanced retrospectively ECG-gated dual-source coronary CT angiogram displayed as (a) curved multiplanar reformation and (b) 3D volume rendering from right ante-
rior oblique perspective show significant ostial stenosis (arrow) of the right coronary artery due to calcified plaque. This lesion had not been appreciated on (c) prior coro-
nary angiogram in straight left anterior oblique projection because the tip of the catheter was advanced beyond the stenosis prior to contrast medium injection.
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of left ventricular ejection fraction that
ranges from 1% to 7%, especially with
earlier generation scanners (118,125–
127). In addition to measuring global
cardiac function, cine viewing of mul-
tiphasic cardiac CT reconstructions en-
ables diagnosis of focal wall motion ab-
normalities according to the standard-
ized 17-segment model proposed by the
American Heart Asssociation (Fig 8)
(128). Visual evaluation of wall motion
abnormalities at cardiac CT has shown
good agreement with cardiac US and
MR imaging using four-row (129,130)
and 16-row CT (120,131) and has fur-
ther improved with current scanners
(122,132–134). The temporal resolu-
tion of CT, however, remains limited
compared with that of echocardiogra-
phy and MR imaging. The recent avail-
ability of detector arrays that cover
the entire cardiac anatomy, such as
320–detector row scanners (23,24),
is expected to further improve the as-
sessment of cardiac function and,
more important, permit dynamic
time-resolved evaluation of myocar-
dial perfusion, which has, to date,
been limited by insufficient detector
coverage (28).

Emerging Applications

Coronary Atherosclerotic Plaque Imaging
Coronary artery calcium scoring has been
used for decades to quantify the calcified
atherosclerotic plaque burden (135–
137). Despite the recognized limitations
of this test (136), it is currently seeing
renewed interest as an aid for further car-
diovascular risk stratification and risk fac-
tor management. Since it has been shown
that contrast material–enhanced coro-
nary CT angiography can noninvasively
depict calcified and noncalcified athero-
sclerotic plaque components (138) (Fig 9),
there has been intense interest in the
evaluation of coronary CT angiography
as a tool for risk stratification and for
monitoring risk factor management.
The rationale behind these efforts is our
growing understanding of the relation-
ship between plaque composition and the
different clinical manifestations of CAD.
It has long been recognized that symp-

toms of chronic stable angina find their
correlate in stenotic, predominantly fi-
bro-calcified lesions (139), whereas the
acute coronary syndrome and sudden
cardiac death are more likely to be asso-
ciated with the rupture of previously non-
stenotic, predominantly lipid-rich, “vul-
nerable” plaques (140–142). MR coro-
nary angiography (143) has contributed
to our current understanding of these re-
lationships, and coronary artery plaque
composition has been studied invasively
with intravascular US (144) and more re-
cently with optical coherence tomogra-
phy (145). The complexity, expense,
invasiveness, and limited availability
of these modalities make them prohib-
itive for more widespread clinical ap-
plication beyond specific clinical sce-
narios and research. Coronary CT an-
giography with its high temporal and
spatial resolution currently enables
coronary artery stenosis detection
along with atherosclerotic plaque bur-
den analysis. Significant efforts have
been undertaken to investigate and re-
fine plaque detection and character-
ization based on CT findings (25,146–
150). Attenuation-based atheroscle-
rotic plaque characterization at
coronary CT angiography has been
shown to correlate reasonably well
with histologic findings (151). On the

basis of ex vivo histopathologic corre-
lation, specific attenuation ranges for
different plaque components accord-
ing to Hounsfield units have been pro-
posed (152).

However, attenuation measure-
ment of coronary artery plaques in
vivo is fraught with multiple confound-
ing factors: The small size and irregu-
lar shapes of target lesions result in
substantial volume averaging. Plaque
attenuation is strongly influenced by
the contrast medium attenuation in
the adjacent coronary lumen (153),
and there is substantial overlap in the
attenuation ranges of fibrous and lipid-
rich plaque types (154). Currently, in
routine clinical practice, reliable dif-
ferentiation of plaque composition be-
yond that of distinguishing calcified
from noncalcified plaque components
is very limited. Furthermore, it ap-
pears unlikely that in the near future,
CT technology will be able to prospec-
tively identify the truly “vulnerable”
plaque that is at risk of rupture and
cause acute coronary syndrome. Newly
developed software algorithms that can
volumetrically quantify calcified and non-
calcified atherosclerotic plaque compo-
nents (Fig 10) may permit use of multide-
tector CT in risk stratification and moni-
toring therapies designed to manage and

Accuracy of 64-Section CT and Dual-Source CT for Detection of Coronary Stenosis in
Comparison with Conventional Coronary Angiography (Per-segment Analysis)

Author Scanner Type
No. of
Patients

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Raff et al (67) 64-Section CT 70 86 95 66 98
Leschka et al (66) 64-Section CT 67 94 97 87 99
Mollet et al (69) 64-Section CT 51 99 95 76 99
Fine et al (68) 64-Section CT 66 95 96 97 92
Ropers et al (73) 64-Section CT 81 93 97 56 100
Ehara et al (70) 64-Section CT 69 90 94 89 95
Ong et al (72) 64-Section CT 134 82 96 79 96
Oncel et al (71) 64-Section CT 80 96 98 91 99
Meijboom et al (77) 64-Section CT 360 88 90 47 99
Weustink et al (76) Dual-Source CT 100 95 95 75 99
Johnson et al (75) Dual-Source CT 35 88 98 78 99
Leber et al (25) Dual-Source CT 88 94 99 81 99
Ropers et al (26) Dual-Source CT 100 92 97 68 99
Brodoefel et al (74) Dual-Source CT 100 91 92 75 97

Note.—NPV � negative predictive value, PPV � positive predictive value.
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reduce risk of major adverse cardiac
events (155,156). These algorithms
may also help in overcoming previous
limitations of plaque burden measure-
ments as noted, for instance, by Leber
et al (146), who observed an underes-
timation of mixed and noncalcified
plaque volumes and a trend to overes-
timate calcified plaque volumes at 64-
section CT compared with intravascu-
lar US when manual plaque volumetry
is used. Furthermore, in this study,
the interobserver variability in deter-
mining plaque volumes with CT was as
high as 37% (146). Newer software
applications have reduced interob-
server variability (R � 0.885–0.920)
for the volumetric assessment of the

noncalcified atherosclerotic plaque
burden (157).

Myocardial Perfusion and Viability
CT versus other imaging modalities.—
There has been ongoing speculation as to
whether CT techniques will be able to
replace nuclear myocardial perfusion im-
aging in CAD evaluation and management
(158). Several studies have explored the
relationship between stenosis at coronary
CT angiography and myocardial perfu-
sion defects at nuclear imaging (159–161)
and invariably demonstrated relatively
weak correlation. On the basis of a figure
of merit of 50% or greater stenosis at
coronary CT angiography, the sensitivity
for detecting reversible myocardial perfu-

sion defects ranged 85%–95% with a
specificity of 53%–79% (159,161). Using
the same threshold of 50% or greater ste-
nosis, Nicol et al (160) found 87% agree-
ment between coronary CT angiography
and myocardial perfusion imaging,
whereas this percentage increased to
96% when stenosis of 70% or greater was
used. Accordingly, the authors argue that
at coronary CT angiography, stenosis of
70% or greater should be used as the
criterion to determine functional signifi-
cance of the lesion (160). The relatively
weak correlation between coronary CT
angiography and nuclear myocardial per-
fusion imaging comes as little surprise
considering the fundamentally different
nature of these tests and the known vari-

Figure 8

Figure 8: Images in 58-year-old woman with atypical chest pain and abnormal stress test. Contrast-enhanced retrospectively ECG-gated coronary CT angiogram
displayed as (a) curved multiplanar reformation shows occlusion (arrow) of proximal LAD subsequently confirmed on (b) conventional angiogram in right anterior
oblique cranial projection. Visual evaluation of (c) diastolic and (d) systolic multiplanar reconstructions in short-axis view show wall motion abnormality with hypokine-
sis (arrow) in the anteroseptal left ventricular myocardium. (e) A 17-segment polar view map with overlay of the coronary artery tree and (f) 3D functional model of the left
ventricle also show hypokinetic segments (arrowheads) and normal wall motion in the remainder of the myocardium; e with vessel overlay illustrates the anatomic rela-
tionship of LAD occlusion (arrow) to myocardial segments with wall motion abnormalities (arrowheads).
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ability in the hemodynamic effect of ste-
notic lesions on myocardial perfusion
(90). Nuclear myocardial perfusion imag-
ing is a pure physiologic test aimed at
evaluating the myocardial blood supply
and provides similar information as exer-
cise stress testing, rest-stress cardiac US,
and myocardial perfusion MR imaging.
Coronary CT angiography per se is pri-
marily an anatomic, morphologic test to
evaluate coronary artery luminal integrity
and typically provides information that
has traditionally been obtained with cor-
onary angiography. Both, physiologic and
anatomic tests are important in the work
up of patients suspected of having CAD,
for detecting stenosis, and for gauging the
hemodynamic effect of lesions on myocar-
dial perfusion. Coronary CT angiography
can replace coronary angiography in the
appropriate clinical scenario but is a pri-
ori complimentary to, and not competi-
tive with, physiologic testing.

Myocardial perfusion: CT develop-
ment.—Myocardial perfusion is one of
the most important prognostic indicators
for patient outcome in the management of
CAD (162). The comprehensive assess-
ment of myocardial perfusion from phys-
iologic testing and morphologic evalua-
tion of the coronary arteries by means of
image fusion of nuclear imaging and cor-
onary CT angiography has been shown to
provide incremental diagnostic value over
either technique alone (90,159,163,164).
However, obtaining diagnostic informa-
tion on coronary artery morphology and
the status of myocardial perfusion with a
single, stand-alone examination remains
a coveted goal. Accordingly, there are a
number of ongoing investigative efforts to
supplement the information on vascular
luminal integrity obtained from coronary
CT angiography with the assessment of
myocardial perfusion and viability. These
efforts have their origins in the era of
electron-beam CT (165) and the very
early days of four-row CT when it was
shown in animal models of acute myocar-
dial infarction (166) that hypoattenuating
myocardial segments reflect perfusion de-
fects. Recently, these initial observations
have been applied in the clinical setting to
patients with acute and chronic myocar-
dial infarction (167,168). For example,
Nikolaou et al (168) reported a 91% sen-

Figure 9

Figure 9: Images in 70-year-old woman with atypical chest pain. Contrast-enhanced retrospectively ECG-
gated coronary CT angiogram displayed as (a) curved multiplanar reformation and (b) 3D volume rendering in
angiographic setting seen from a caudal left anterior oblique projection show significant stenosis (arrow) in
the mid LAD subsequently confirmed on (c) conventional coronary angiogram in the same projection. The
cross-sectional nature of coronary CT angiography reveals the completely noncalcified nature of the culprit
lesion (arrow in a).

Figure 10

Figure 10: Contrast-enhanced retrospectively ECG-gated coronary CT angiography in 63-year-old man
with atypical chest pain. (a) Curved multiplanar reformation shows 50% stenosis of the mid right coronary
artery caused by predominantly noncalcified plaque (arrowheads), as well as more proximal nonobstructive
calcified plaque (arrow). (b) Color-coded characterization and volumetry of atherosclerotic plaque compo-
nents performed by using a dedicated plaque analysis and quantification algorithm. Low-attenuation, medi-
um-attenuation, and calcified plaque components are differentiated and displayed in dark green, light green,
and pink, respectively. Intravascular contrast material is displayed in orange.
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sitivity, 79% specificity, and 83% accu-
racy for the CT detection of myocardial
infarct. More recently, initial reports
have shown good correlation between
dual-energy CT (see above) and SPECT
nuclear myocardial perfusion imaging
for detecting decreases in the myocar-
dial blood supply (33) (Fig 11). Since
dual-energy CT data can be postpro-
cessed in different ways to provide rou-
tine morphologic information on vascu-
lar luminal integrity, as well as the sta-
tus of the myocardial blood supply (Fig
11), this modality allows detection of
obstructive CAD while simultaneously
providing information on the hemody-
namic effect of detected lesions on myo-

cardial perfusion from a single dual-
energy CT acquisition.

Efforts are underway to apply the
principles of nuclear rest-stress myocar-
dial perfusion imaging for CT applica-
tions. Preclinical studies (32,169) investi-
gating CT image acquisition under ade-
nosine-induced stress demonstrate the
feasibility of detecting reversible ischemia
and accurately measuring myocardial
blood flow during first-pass contrast-
enhanced CT. On the basis of this preclin-
ical evidence and emerging human inves-
tigations, it is conceivable that adenosine
stress CT may provide similar informa-
tion about the status of the myocardial
blood supply as does stress nuclear myo-

cardial perfusion imaging, while at the
same time enabling the assessment of
coronary artery morphology (Fig 12).
George et al (170) recently performed a
pilot study using adenosine stress 64- and
256-row CT in 40 patients with abnormal
myocardial perfusion SPECT findings.
They compared the combination of coro-
nary CT angiography and rest-stress CT
myocardial perfusion imaging to detect
hemodynamically significant stenosis,
with the combination of rest-stress
SPECT and quantitative coronary angiog-
raphy as the reference standard. These
authors reported 86% sensitivity, 92%
specificity, 92% positive predictive value,
and 85% negative predictive value on per-

Figure 11

Figure 11: Images in 58-year-old woman with atypical chest pain and prior abnormal stress test. Contrast-enhanced retrospectively ECG-gated dual-source coronary
CT angiogram obtained with dual-energy technique and displayed as (a) curved multiplanar reformation shows occlusion (arrow) of the mid LAD, which is subsequently
confirmed at (b) invasive coronary catheterization in left anterior oblique caudal projection. (c) Prior rest perfusion SPECT in short-axis view shows corresponding fixed
perfusion defect (arrowheads) in the anteroseptal myocardium. Dual-energy reconstruction of the same CT scan displayed in (d) short-axis view and as (e) 3D volume
rendering from a caudal left anterior oblique perspective show corresponding lack of iodine-based contrast material in the anteroseptal left ventricular wall (arrowheads
in d); e illustrates the anatomic relationship of LAD occlusion (arrow) to myocardial segments with decreased blood supply (arrowheads).
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patient analysis and 79% sensitivity, 91%
specificity, 75% positive predictive value,
and 92% negative predictive value on
per—vessel territory analysis. In this
study, the estimated mean effective radi-
ation dose was 21.6 mSv for combined
rest and stress 256-row CT imaging and
16.8 mSv for 64-row stress CT examina-
tions.

Myocardial viability.—The determi-
nation of myocardial viability with nuclear
imaging (171) and MR imaging (172) is
playing an increasing role in predicting
the success of revascularization therapy.
Myocardial viability has traditionally been
assessed by using nuclear techniques
(173,174), and more recently, MR imag-
ing, which is now considered the clinical
reference standard (172,175,176). De-

layed contrast-enhanced imaging with
MR detects accumulation of gadolinium-
based chelates in areas of myocardial ne-
crosis after infarction (177). The same
principle may apply to cardiac CT (Fig 13),
since iodine-based intravenous contrast
material has similar kinetics as gadolin-
ium. It has repeatedly been shown in
animal models that CT can depict iodine
accumulation in areas of irreversibly
damaged myocardium (178,179). CT
has been shown to correlate well with
delayed-enhancement MR imaging dur-
ing the different stages of infarction, en-
abling assessment of reperfused infarc-
tion during acute, subacute, and chronic
stages (180,181) and accurate determi-
nation of transmural involvement (182).
In humans, delayed-enhancement CT

also correlates well with delayed-en-
hancement MR imaging, even though
CT systematically underestimates the
true infarct size as compared with MR
imaging (168,183–185).

So far, there is no universal agree-
ment on the most suitable protocol for
delayed-enhancement CT imaging.
Some studies indicate that the highest
difference in contrast attenuation be-
tween a normal and infarcted myocar-
dium occurs 5 minutes after intrave-
nous iodinated contrast material injec-
tion (178); however, intervals of up to
15 minutes after contrast material in-
jection have been proposed. Low kilo-
voltage (eg, 80 kVp) protocols for de-
layed-enhancement CT imaging have
been shown to result in better iodine

Figure 12

Figure 12: Contrast-enhanced retrospectively ECG-gated rest-stress dual-source coronary CT angiography performed with dual-energy technique at rest in 58-year-
old man with prior LAD stent implantation, atypical chest pain, and abnormal stress test. (a) Curved multiplanar reformation of the rest CT scan shows patent LAD stent
but complex, predominantly noncalcified lesion (arrowhead) just distal to the stent, subsequently confirmed at (b) conventional angiography in right anterior oblique
cranial projection. (c) Dual-energy reconstruction of the same rest CT scan displayed in short-axis view shows unremarkable left ventricular iodine distribution at rest.
(d) Repeat dual-energy CT scanning during adenosine-induced hyperemia shows decreased blood supply (arrows) in the anterolateral left ventricular myocardium. Find-
ings are in good correlation with prior SPECT myocardial perfusion images acquired at (e) rest and (f) stress, which show reversible perfusion defect in the same myocar-
dial area (arrows).
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contrast differentiation (186). The cal-
culated additional radiation exposure
from performing delayed enhance-
ment CT for assessment of myocardial
viability is approximately 3.8 mSv in
female and 2.8 mSv in male patients
(183).

The efforts at further refining car-
diac CT into a technique that can as-
sess coronary artery anatomy, func-
tion, perfusion, and viability are likely
to continue and intensify. The effective-
ness of these efforts in challenging the
role of traditional physiologic testing re-
mains to be seen. However, patient
evaluation with a single, noninvasive
modality is likely to provide safer and
cheaper evaluation with less radiation
than the routine combination of nuclear
myocardial perfusion imaging and con-
ventional angiography currently needed
to obtain this information.

Coronary CT Angiography in a
Changing Health Care Environment

Emerging Data about Outcome and
Prognosis
As coronary CT angiography is in-
creasingly becoming a clinical tool in
widespread use, we note substantial
growth of the evidence base regarding

outcomes and prognostic value of this
test. There is evidence that the extent
and severity of CAD defined at coro-
nary CT angiography predicts all-
cause mortality. In a consecutive co-
hort of more than 1000 symptomatic
patients older than 45 years of age,
disease markers obtained at coronary
CT angiography could identify in-
creased risk for all-cause death,
whereas a negative coronary CT an-
giogram portended an extremely low
risk (79). In another cohort of 100
patients undergoing coronary CT an-
giography, the extent and severity of
CT markers of CAD during 16-month
follow-up was closely associated with
the occurrence of major cardiac
events, while the excellent prognosis
in patients with a normal test result
was confirmed (82). A recent study
(81) documented the safety of ruling
out coronary artery stenosis solely on
the basis of a normal coronary CT an-
giogram and showed a concomitant re-
duction in conventional coronary cath-
eterizations. In a cohort of more than
1000 consecutive symptomatic outpa-
tients who were initially managed
solely on the basis of coronary CT an-
giography findings, there were only
two patients in whom significant ste-
nosis was detected at subsequent cor-

onary catheterization during 6-month
clinical follow-up (187). Clinical out-
comes over a 9-month follow-up in al-
most 2000 patients who underwent
coronary CT angiography were no dif-
ferent from those of a matched cohort
of more than 7000 patients undergo-
ing SPECT (188). The results of these
studies are consistent with the high
negative predictive value of a normal
coronary CT angiogram, which has
been consistently demonstrated in the
early investigations and strongly sup-
ports the potential role of coronary CT
angiography as a frontline test in the
diagnostic algorithm of CAD.

Evolution of Cardiovascular Disease
Management
The paradigm for CAD management is
undergoing pivotal transitions. For the
longest time, percutaneous coronary
intervention with coronary artery
stent placement had been one of the
most rapidly growing procedures in
medicine, while the number of coro-
nary artery bypass surgeries was
steadily declining (1). Controversy re-
mains as to whether patient outcome
is better with percutaneous or with
surgical revascularization (189–193).
With the availability of ever more re-
fined and potent pharmaceutical

Figure 13

Figure 13: Contrast-enhanced retrospectively ECG-gated dual-source coronary CT angiography in a 49-year-old woman with previous inferoapical infarct and prior
LAD stent placement. (a) Curved multiplanar reformation shows mild proximal in-stent re-stenosis (arrowhead) of the LAD stent due to intimal hyperplasia. Multiplanar
reformations of delayed, low-radiation-dose repeat CT acquisition after 6 minutes displayed as (b) two-chamber long-axis and (c) three-chamber views show delayed
enhancement (straight arrow) of the infarcted inferoapical myocardium, as well as formation of a layered apical thrombus (curved arrow) as an incidental finding.
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agents, however, medical therapy is
emerging as a formidable contender to
invasive therapies for CAD manage-
ment. One of the most publicized re-
cent testimonies to this development
is the Clinical Outcomes Utilizing Re-
vascularization and Aggressive Drug
Evaluation (COURAGE) trial (194).
This investigation and prior work
(195–197) support the notion that the
outcome of patients with chronic an-
gina does not differ with optimal med-
ical treatment compared with percuta-
neous coronary intervention. Al-
though the design and conclusions of
these trials have predictably been
challenged (198,199), the paradigm of
optimal medical treatment as the core
of CAD management is increasingly
gaining support. For the first time
since their introduction, we see
slowed growth or even decline of cor-
onary artery stent-placement proce-
dures (200). Use of medical therapy as
part of a program of primary and sec-
ondary prevention and improvements
in screening and risk stratification
have widely been credited with the
current sharp downward trend in car-
diovascular disease mortality (1). Ef-
forts are ongoing to further improve
this approach by identifying new
markers and developing new strate-
gies for ever finer risk stratification
and disease prevention. The current
renaissance of coronary artery cal-
cium scoring is reflective of the desire
for more sensitive methods of identi-
fying at-risk individuals and for cus-
tomizing the aggressiveness of risk
modification. As outlined above, coro-
nary CT angiography is the only non-
invasive modality that enables appre-
ciation of the entire coronary athero-
sclerotic plaque burden (Fig 10). The
atherosclerotic plaque burden is the
substrate of all coronary events, for
example, stable angina in the presence
of heavily calcified stenotic lesions
(142) or acute coronary syndrome due
to sudden rupture of predominantly
noncalcified plaque (201). The current
evidence base does not justify the use
of coronary CT angiography for popu-
lation-based screening of asymptom-
atic individuals for coronary athero-

sclerosis (54). However, the above
considerations along with ongoing
technical refinement (eg, lower radia-
tion dose) and emerging data (82,202)
on the prognostic implications of
plaque composition at coronary CT
angiography may suggest that select
asymptomatic high-risk (ie, those with
a dismal combination of multiple risk
factors) individuals could benefit from
finer risk stratification by determining
the extent and phenotype of their en-
tire coronary atherosclerotic disease
burden to help determine the appro-
priate level of aggressiveness of med-
ical risk management and its success
(203).

Cost-effectiveness
Initial reports demonstrate that coro-
nary CT angiography is particularly
cost-effective in symptomatic subjects
with low and intermediate pretest
probability of obstructive disease
(204), which supports this indication
as appropriate (51–55). In their study,
Dewey et al (204) concluded that for
patients with a 10%–50% pretest like-
lihood of CAD, coronary CT angiogra-
phy was the most cost-effective ap-
proach, whereas in individuals with a
likelihood for disease above 60%, con-
ventional catheterization remains the
most effective first line test. Several
investigations highlighted the cost-
effectiveness advantage of coronary
CT angiography over nuclear myocar-
dial perfusion imaging (80,188). A re-
cent analysis of Medicare category III
transaction codes showed a reduction
of 27% in adjusted total health care
costs and of 33% in disease-specific
expenditures when coronary CT an-
giography was used instead of SPECT
(188).

In the assessment of patients with
acute chest pain, all analyses available to
date demonstrate substantial savings
when CT is integrated in the diagnostic
algorithm (107,108,205,206). Compared
with the standard of care work-up,
significant reductions in the length of
hospital stay and cost-savings ranging
from the hundreds to thousands of
dollars per patient have been reported
(107,108). Khare et al (206) used a

computer model to estimate the cost-
effectiveness of coronary 64-section
CT angiography in the emergency de-
partment compared with an observa-
tion unit stay that included stress ECG
or stress echocardiography for the
evaluation of low-risk patients with
chest pain in the emergency depart-
ment. According to their analysis, the
thresholds where coronary CT angiog-
raphy constituted a cost-saving strat-
egy compared with the conventional
work-up were the cost of CT of less
than $2097, the cost of observation
unit care of more than $1092, and a
prevalence of CAD of less than 70%
(206), again emphasizing the impact
of pretest likelihood on cost-effective-
ness. In a randomized controlled trial
of coronary CT angiography for evalu-
ation of acute chest pain, Goldstein et
al (107) investigated 203 individuals
with acute chest pain in the emer-
gency department. The authors found
that CT evaluation reduced the time to
diagnosis compared with the standard
of care (3.4 hours vs 15.0 hours) and
lowered costs ($1586 vs $1872). The
use of CT in the triage of patients with
acute chest pain has been shown to be
particularly cost-effective in women,
who traditionally present a greater
challenge for the diagnostic work-up
of acute chest pain than men (205).
For example, Ladapo et al observed
that coronary CT angiography was
cost-saving in women under a wide
variety of model assumptions (205).

Thus, rapidly accumulating evi-
dence-based data increasingly support
that coronary CT angiography, if used
according to established guidelines
(54), is cost-effective. The increasing
recognition of the utility of this test as
a core component in the work-up and
management of CAD can benefit pa-
tients and the health care system as a
whole.

Conclusion

In summary, current technical limita-
tions, especially the association of cor-
onary CT angiography with relatively
high levels of radiation, will be in-
creasingly addressed by ongoing re-
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finements in technology. Along with an
increasing evidence base, guidelines
for appropriate indication are in place
and are evolving to ensure appropriate
use, curb overutilization, and ensure
cost-effectiveness. New technologies
and new applications are constantly
being explored and are widening the
scope of coronary CT angiography
over mere coronary artery assessment
to the complete analysis of cardiac
morphology, function, perfusion, and
viability. Considering all of the above,
we believe that there can be no doubt
over the rapidly expanding role and
growing importance of coronary CT
angiography.
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